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Abstract A minimal-order observer and output-feedback stabilization control are given
for single-input multi-output stochastic nonlinear systems with unobservable states, un-
modelled dynamics and stochastic disturbances. Based on the observer designed, the
estimates of all observable states of the system are given, and the convergence of the es-
timation errors are analyzed. In addition, by using the integrator backstepping approach,
an output-feedback stabilization control is constructively designed, and sufficient condi-
tions are obtained under which the closed-loop system is asymptotically stable in the large
or bounded in probability, respectively.
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The design of global stabilization controls for stochastic nonlinear systems has been
intensively investigated!! =], which is based on recursive applications of cascade designs,
such as the well-known integrator backstepping method. Khas minskiil® presented the
basic stability theory of stochastic control systems in his classical book, and introduced
two important stability concepts: bounded in probability and asymptotically stable in the
large, which have now been applied widely. It is well known that dealing with the second
derivative terms is the key to stochastic control design. The existing methods deal with
the second derivative terms by increasing the power of the variables in control laws!* 3!

[5-71. For instance, by adopting quartic

or enlarging the power of the feedback capacity
Lyapunov function to increase the power of the variables in control laws, refs. [1—3]
presented asymptotical stabilization controls in the large under the assumption (A): “the
nonlinearities and disturbance equal zero at the origin.” Besides, refs. [5—7] studied op-
timal control design by using weighted quadratic Lyapunov function and adjusting the
feedback capacity via regulating the weighted functions under risk-sensitive index, and
pointed out that if the control goal is to stabilize the closed-loop system, then the assump-
tion (A) mentioned above is not a necessary condition, although it seems unavoidable for

globally asymptotical stabilization control.
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The controls in refs. [3, 7] were based on full state feedbacks, and those in refs.
[1, 5, 6, 8] were based on output feedback and full-order state observers. When there
is no unmodelled dynamics and stochastic disturbance, by using the full-order observers
given in refs. [1, 5, 6, 8], the state estimation error can be made converging to zero
asymptotically, and the convergence and convergent rate depend only on the initial value
of the estimation error, instead of the output or state processes. Recently, in ref. [10]
Jiang gave a reduced-order observer with a special structure for deterministic systems.
Unlike refs. [1, 5, 8], an extra nonlinear term depending on the output y = z; arises in
the dynamical equation of the state estimation error. Generally speaking, this nonlinear
term is not zero, even when there is no unmodelled dynamics and stochastic disturbance.
This may affect the asymptotical convergence of the state estimation error. In addition, the
reduced-order observer and design idea of ref. [10] are not adequate to the multi-output
case (for example, y = (x4, -+, x,.)", 7> 1).

The purpose of this paper is to study the design problem of output-feedback stabiliza-
tion control for a class of single-input multi-output (SIMO) stochastic nonlinear systems.
By introducing a minimal-order observer, an output stabilization control is constructively
designed so that the closed-loop system is asymptotically stable in the large when the
nonlinearities and stochastic disturbance vector fields equal zero at the equilibrium point,
and is bounded in probability when the stochastic disturbance vector fields do not equal
zero at the equilibrium point. The minimal-order observer introduced not only preserves

r[1:5:6:8] byt also avoids the above-mentioned extra

the advantages of full-order observe
nonlinear term in the dynamical equation of the state estimation error!'?), and at the same

time, is adequate to the control design of SIMO systems.
1 Notations and preliminary results

The following notations will be used throughout this paper. For a given vector or
matrix X, X7 denotes its transpose; || X || denotes the Euclidean norm in vector case or
the corresponding induced norm in matrix case; tr(X) denotes its trace when X is square,
i.e. the sum of all elements on the main diagonal line. I denotes the identity matrix
(the dimension will be determined in accordance with the context). For a given vector
x = (21, +,2,)7, x5 denotes (x4, -+ -, x;)7; @ ;) denotes (x5, - -+, x;)7; & denotes
its estimate associated with an observer, Z denotes estimation error, i.e. £ = ¢ — . For a
given scalar number z, |x| denotes its absolute value.

For simplicity of expression, we will drop the arguments of functions when no confu-
sion is caused.

Definition 114, A function §(-): R, — R, is called K, if it is continuous, strictly
increasing, and 6(0) = 0, lim,, o, (p) = oc.

For stochastic nonlinear time-varying systems in form:
dx = f(t, z)dt + g(t, z)udt + h(t, z)dw,
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where w is standard Brownian motion with appropriate dimension defined on probability
space (€2, F,P), with © a sample space, F a o-algebra, P a probability measure, we
define the differential operator £ as the following:

LV (tz) = BVg; x) n BVa(i, x)f(t, ) + BV;Z, x)
1tr{82V(t,x)

t3 52 h(t, z)h" (¢, x)} .

Here V (¢, x) is a function once continuously differentiable with respect to ¢ and twice

g(t, z)u

continuously differentiable with respect to x.

Recall two stability notions for the following free-control system:
dx = f(t, x)dt + h(t, z)dw. (1)

Definition 2°l.  Consider system (1) with f(0) = 0 and h(0) = 0. Let {z(t), t >
0} be the solution precess of system (1) with initial value £(0). The zero solution z(t) = 0
or system (1) is said to be asymptotically stable in the large if for any € > 0,

lim P qsupllz(t)|| =>ep =0,
z(0)—0 { t)%)) le@ }
and for any initial condition z(0),

P{lim z(t) =0} = 1.
Definition 3°).  System (1) is said to be bounded in probability, if all of its solution
processes {z(t), t > 0} satisfy
lim sup P{||z(t)|| > ¢} =0.

CcC— 00 O<t<oo

Based on these two concepts, we have the following basic theorem, which will play
an important role in our control design below.

Theorem 1. Consider the stochastic nonlinear system (1). If there exists a function
V(t, ) once continuously differential with respect to ¢ and twice continuously differen-
tial with respect to z, and satisfying

Wi(z) < V(t, z) < Wa(z), LV(t, z)<—c;V(t )+ co,
where Wy (z) and W(z) are positive definite and radially unbounded functions, ¢; > 0
and c; > O are constants, then (a) system (1) has a unique solution almost surely, (b)
system (1) is bounded in probability, (c) in addition, if f(¢, 0) = 0, h(t, 0) = 0, V¢, and
there exists a positive definite and radially unbounded function W () such that
LV (t, 7) < ~W(z),
then system (1) is asymptotically stable in the large.

Proof. By Theorem 4.1 of Chapter 3 and Theorem 4.4 of Chapter 5 of ref. [9],
Theorem 2 of Chapter 3 and Section 13 of ref. [11], we can show the theorem in a similar
way to the proof of Theorem 2.5 of ref. [7].
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2 Problem formulation

2.1 System model

Consider the following stochastic nonlinear system
dX = Uo(t, X .’E)dt + o1 (t’ X a:)dw,
dzy = zadt + fi(zp))dt + ¢1(t, x, z)dt + @1 (71)dw,

dxr = IL',-+1dt + fr(m[r])dt + 'l/)r(ta X .’L’)dt + Qor(xl)dwa

2)
d$,.+1 = xr+2dt + fr+1(y)dt + ¢r+1(t7 X J,‘)dt + Pri1 (xl)d'wa

dz, = udt + f(y)dt + Yu(t, X, 2)dt + pn(z1)dw,

Y = T
where x € R"®, u € Rand y € R" are system state vector, control input and measurable
output, respectively; x € R™ is the unobservable states of the system, its dynamical
model is unknown, i.e. functions oo(t,x,z) and o(¢, x,x) are unknown; w € R™
is an independent vector-valued standard Brownian motion defined on probability space
(Q,F,P), with Q a sample space, F a o-algebra, P a probability measure; f;(x;)

(t=1,---,7)and f;(y) (¢ = r + 1, ---, n) are the modelled (or known) dynamics
of the system; ¥;(¢, x, ) (i =1, - - -, n) are the unmodelled (or unknown) dynamics of
the system; @;(z1) (¢ = 1, - - -, n) are the gain functions of the stochastic disturbances.

The main results of this paper are based on the following assumptions:

Al. For the unobservable states y, there exists a time-varying V;(¢,x) once continu-
ously differential with respect to ¢ and twice continuously differential with respect
to x, and there exist positive definite and radially unbounded functions Wy, () and
Woa(x), a Ko function §(-), a smooth function do(-): do(0) = 0, and constants
c >0, v > 0, such that

Woi(x) < Vo(t, x) < Woa(x) and
LVy(t,x) < —cVo(t, x) — 700 (lIxl) + 2160 (z1).

A2. Nonlinear functions f;(-) ( =1, -+, n) and ¢;(-) (¢ = 1, - - -, n) are known and
smooth, and satisfy: f;(0) =0(@G =1,---, n).

A3. There exist a K, function 7r(+), a nonnegative and smooth function §,(-): §;(0) =0

(i=1,---,n) and constants y; > 0 (¢ = 1, ---, n) such that the unmodelled
dynamics ¥;(t, x, @) (i = 1, -+, n) satisfy: |1 < v (|IxIl) + 236i(1)
(i: 17"'7n)'

A4. There exists a constant y > 0 such that §(p) > ym(u), Yu € [0, 00).
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Remark 1.  The states of system (2) are divided into two parts: one is X, which
is unobservable and unknown dynamics, and the other is x, which can be measured di-
rectly or is observable. They may depend on and affect each other. The stability of the
unobservable state x may be affected by the dynamical behavior of z, while the stability
of z may be affected by the dynamical behavior of x. Assumption Al describes the dy-
namical behavior of the unobservable state y of the system: it not only is exponentially
stable in the large when x = 0, but also has some stability margin with respect to the
unmodelled dynamics. The term x1Jo (1) limits the influence of state = on the stability
of the unobservable state y. For the unobservable state y satisfying this limitation, we can
eliminate the influence of = on the stability of )y by designing control properly, and accom-
plish stabilization control of the unobservable states. Similarly, in order to construct an
output-feedback stabilization control, Assumption A3 gives some constraints on unmod-
elled dynamics. Assumptions A1—A3 tell us that when there is no stochastic disturbance,
the origin is the equilibrium point of the open-loop system. Assumption A4 depicts the
connection between the stability margin of the unobservable state x and the unmodelled
dynamics, which, when designing a control law, ensures that the influence of the unmod-
elled dynamics on the stability of the unobservable state x can be removed in virtue of the
stability margin of the unobservable state.

System (2) can be rewritten into the following compact form:
dx = oo(t, x, x)dt + o1 (t, x, x)dw,
dy = [Avy + Brpr + Fiy(y) + Yy (L, X, 2)] dt + Hyj(21)dw,
dpi1m) = [Anor@ri1,n) + Buortt + Flop1,0)(y) + Wrg1n (8, X, )] dt
+Hppy1,m)(21)dw,

3)

where
r 0
0
I
A, = ) B, = )
0
0 O
L (rxr)
(rx1)
f1 (2 ¥1
F = : , U= , H= :
| fa Vn ©n

2.2 Control objective

The objective of this paper is to design a minimal-order observer and an output-
feedback control:
& =9 y), u=py), @)
such that the zero solution of the closed-loop systems (2)—(4) is bounded in probability
and, in particular, when ,;(0) =0 (¢ = 1, - - -, n), asymptotically stable in the large.
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3 Output-feedback control design

In this section, a minimal-order observer is introduced first, based on which estimates
of all the system states are given, and then, a constructive procedure for stabilization con-
trol design is described.

Since z1, 2, - - -, ., the former r components of = of system (2), can be obtained
directly from the system output, only the latter n — r components .1, - - -, T,, need to
be rebuilt by an observer. By the linear system theory, when system (2) degenerates to a
linear system and is without unknown disturbances, the minimal order of its state observer
is “n — r” (e.g. ref. [12]).

3.1 Observer design
Denote ¢(t) = dy — A,ydt — Fj,1(y)dt, or equivalently by (3), ¢(t) = B,x,;1dt +
Up,(t, x, x)dt + Hpy(z1)dw. If g(t) is available for feedback design, then a minimal-
order observer can be designed as
daA:[T_H,n} = DQAZ[H_LH} dt + B,,_,udt + ﬂT+1,n] (y)dt + Gq(t), 5
where D = A, ,-GB,C;_.,C, ., =(1 0 --- 0)" €eR"",and G = [g;4] €

n—r’

R(™=")X" is a parameter matrix to be determined below. But, due to the existence of
the unmeasurable state 2,1, unknown function W(,;(¢, x, =) and stochastic disturbance
w, eq. (5) cannot be used for feedback design. In order to overcome this difficulty, we
introduce a new vector:

£ = &py1,0 — Gy (6)
This together with (5) gives
§ = DE+ Bovu+ Fiy10(y) — GFL(y) + (DG — GA,)y. (7)
Obviously, £ is feasible, and thus, can be used for feedback design.

From (6) and (7), we achieve a reconstruction of the unmeasurable state vector T, 41, ):
Z[rt1,n) =  + Gy, with estimation error
j}[r+1,n} = T[r4+1,n] — i‘[r+1,n} = Z[r+1,n] — § - Gya (8)
which satisfies the following dynamical equation:
d:i[r-i-l,n] = [An—ra?['r-i-l,n] + Bn—ru + ﬂr-}-l,n] (y) + \Il[r-i-l,n] (t7 X .’E)] dt
+ Hyp1my(z1)dw — [DE + Bryu + Firp1m)(y) — GFiy(y)
+ (DG - GA,)yldt — G [Arydt + B, C]_ X[ y1,ndt 9)
+ F’[T] (y)dt + \I’[T] (t, X x)dt + H[T] (xl)dw]
=DZF[rp1,dt + ¥ (L, X, z)dt + H(z1)dw,
where W(ta X JJ) = \Il[r+1,n](ta X aj) - G\IJ[T](ta X l‘), ﬁ(xl) = H[T—H,n](xl) -
GH[T] (.’171)

Denote the last column of matrix G as (k,41,- -+, k,)”. Assume that the polynomial

Copyright by Science in China Press 2004



Minimal-order observer and output-feedback stabilization control design of stochastic nonlinear systems 533

s" "+ k18" "+ -+ k,_15+ k, is Hurwitz. Then the (n — r) X (n — r) matrix

—k, 0---0
is strictly stable. And thus, there exists a positive definite matrix P such that
D"P+ PD=—-1. (10)

It can easily be seen that if the unmodelled dynamics and the stochastic disturbance
do not exist, i.e. ¥ (¢, x, ) = 0 and H(z,) = 0, then (9) becomes
Zr1,m) = DEjpg1n)- (11)
Therefore, by the strict stability of I, the estimation error Z|,,1 ) is globally asymptot-
ically stable. This implies that the unmeasurable state vector (z,41, -+, Z,)" can be
reconstructed by (£ + Gy) very well.
In this case, the overall system with the observer (7) in loop is
dX :UO(ta X5 .’L‘)dt + o1 (t7 X x)dwa
di‘['r—i—l,n] =D52[T+17n]dt + E(t, X .Z')dt + H(ml)dw,
dy = [A‘ry + Br(i‘r—i-l + 61) + BTC;_rGy + F[r] (y) (12)
+ \I/[T] (t, X a:)] dt + H[T] (ml)dw,
df = [DE+ B, u+ Firy10(y) — GFy(y) + (DG — GA,)y] dt.
Remark 2. Following refs. [1, 8, 10], other reduce-order (or minimal-order) ob-
servers may be obtained, but the order-reduction degree and convergent rate may not be
as good as the observer (7).
For example, following refs. [1, 8], an observer can be given as:
i.[r,n] = Anf'H—laA:[r,n] + K[r,n] (xr - QA:T) + anr#—lu + -F1[7‘,n] (y)a
where 2|, ,,) denote the estimate of z[, ), K|, n = (kpy-- -, kn)T is a design parameter
vector such that the polynomial s”~"*! + k, 8"~ " + .- + k,,_15 + k,, is Hurwitz.
Let Z[y,n] = T[rn] — L[r,n) be the estimation error. Then
di[r,n] = Sr-%[r,n]dt + \I][r,n] (ta X .’L‘)dt + H[r,n} (xl)d'wa

where

is a strictly stable matrix.

Obviously, in this case, although the estimation error fr[m], and thus, & converges
asymptotically to zero when the unmodelled dynamics and the stochastic disturbance do
not exist, the observer is n — r + 1-order and not minimal-order.
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For one more example, following ref. [10], we can obtain the estimate &; = &; + k;x,
(i=r+1,---,n)ofstatex; (i =r+1,---,n), where & (i =7+ 1,---,n) are the
states of the following observer:

gr—‘rl = €T+2 + kr+2xr - kr—i—l (€r+1 + kr—‘,—lxr) 9
£ = Civt + ki@ — ki (i1 + kppazy) , =742, ,n—1, (13)
én =UuU-— kn (fr—‘,-l + kr—‘rlx'r) 9
where design parameters k; (r + 1 < ¢ < n) are chosen such that the matrix S,.;; is
strictly stable.

Then, the estimation error Zj,41,n] = (Tr11— &1 —Kkr1Zr, -+, Tn—En —knz,)7
satisfies
dZfri1,0) = SriaZlrar,mdt + F(y)dt +P(t, x, ©)dt +B(z1)dw, (14)
where

F@) = (fra®) = ks £ (), -+, faly) — ki (y))7,
P(t, x> ) = Wria(ts X @) = k1, (t, X5 @), -5 Yalt, Xo ) = Kl (t, X, 2))7,
P(x1) = (Pr1(@1) = krs1or(@1), -5 @al@1) — knpr(21))7.
By this, it can easily be seen that the observer (13) is now n — r-order, minimal-order,
but the convergence of the estimation error is hard to analyze. For instance, when the

unmodelled dynamics and the stochastic disturbance do not exist, i.e. ¥(¢, x, ) = 0
and H (z,) = 0, the error equation (14) becomes

j[r+1,n] = Sr+15:[r+1’n] + f(y)
Unlike (11), an extra nonlinear term f(y) arises here. Due to this unexpected term, the
estimation error Z|,41 ,) May not be convergent to zero, in general. Besides, the observer
(13) is only applicable to the single-output systems such as y = x;, and not applicable to
the multi-output systems such as y = x,) (r > 1) (This will be explained further below).

3.2 Control design

We are now in a position to construct a control u(y, £) for the overall system (12)
to ensure the closed-loop system is bounded in probability and asymptotically stable in
the large when the nonlinearities and stochastic disturbance vector field equal zero at the
equilibrium point of the open-loop system.

First, introduce a new state transformation as follows:

zi = x; — o1 (xpmqy), 1=1,2,---,1, 15)
zi = &ir — a1 (Y,&irn)), t=7+1,---m,
and set ao(xm) =0, 2,41 = 0. Here, o; (2 = 1,---,n — 1), called the virtual controls,
are some smooth functions to be determined later; a,, = u(y, §) is the actual control to
be specified later. Besides, a; (i = 1, ---, n) are asked to preserve the equilibrium at
the origin of the nonlinear system, that is, @;(0) = - -+ = @,(0) = a,41(0,0) = --- =

,(0,0) = 0.
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Under the new variable vector z, system (12) becomes
dx = oo(t, x, x)dt + o1 (t, x, x)dw,
dZ(r 1,0 = DE i1 ,mdt + U(¢, x, )dt + H(z,)dw,
dz; = (zip1 + og)dt + Q;(zp))dt + ©,(¢, x, z)dt + @;(@1, 2[i—1))dw,
t=1,---,r—1,

dz, = (2p11 + @,)dt + Z,,1dt + Q. (y)dt + O,(t, x, z)dt
+ @T(.’El, x[r_l])dw (16)
O, qi1 .
dzrpi = (Zrtit1 + Qpi)dt — 8; “ &, 1dt + Qi (y, &) dt
+ ®T+i(ta X x)dt + (br-i-i(yag[i*l])dwa 1= 1a e, —T — ]-a
Oap_1
dz, = udt — gx Tt g rdt + Q(y, Enn)dt + O (t, X, 7)dt
+ (I)n(ya g[n—r—l])dwv
where
— aaz 1 .
‘Pz’:%’(ﬂﬁl)—z pi(x1), 1=1,---,1;
=1 8(31
" Oa i
@1-4-1 _Z aa+ 190_7($ ), 7/:1, ,n_T,
=1 9%
Q f = aai—l[ + f ] 1 Z 82Oli_1 T
i =Ji— Tjt1TJil— 5 PiPrs
o Oz 2, ke{Tmio1) O0x ;0
1=1,2,---,r—1,
T r—1
da,_1 1 a;_y
Qr:fr+ 91]-'1']_ —[$]+1+f]]__ Z QOJ ;7
j=1 o 9z 2 kel Oz; 0,
1 o0a, . ; 1
Qs = frrs(y) — kopibs — Zg”fj +[DG - GA, iy - G Tt
i=1 i
8ar+z 1 aar—i-z 1 - aar—i—z—l
- f £ + 91i%; | —
Zaxjg> 121 > %
X <_kr+j€1 + &1 + frrj + [DG = GA ]y + Zgjkfk)
k=1
]. Z B al 1 1
~ a 7@]‘70,% =L-,n—=r,
2 ke axjax

i—1
Oa;_y .
6121’&’_2 8l'j ¢jaZ: 1a e, T
j=1

" Qa4 .
®r+i:_z ";bja ’L=1,"',’I’L—’f‘.

j=1 axi
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Here, [DG — G A,]; denotes the r-dimension row vector consisting of the ith row of the
matrix DG — GA,..

Choose Lyapunov function V (-, -) : R* " x R* = R:
V =& g PErgrm + ) SBilz-1)7],
=1

where P > 0 is the unique positive solution of (10), Z;(z;_y) > 0 (i =1, ---, n) are
some smooth weighted functions to be specified later.

By It6 formula, from (10) and (16) we have

LV = — i ml? + 28]y P+ a{H PH} + Y M, 112
n n i—1 8:_
+2 Silzi o+ Qi+ Oz + YY) (201 + oy + 25+ 0)27
i=1 1=2 j=1 J
1 & 9*(B;z2
+§ZU‘{ é2 )[(I) 7‘1):]7-[@;7’(1):]}’ (17)
=1
where
- 0=, _.  Oa,
Mr = 2:‘7'3 Mr—i—l = Wﬂzr—kl - 2:‘r+18— )
aa < 0E; doy L da;_y
M;=—z I —oEm T i=r 42, -
218% ar, ox, = Tt2nn

By Assumptions A3 and A4, the second term on the right-hand side of (17) satisfies

- = . IIPII2
28] 11, P < | Epppr,mI” + e
ST I L e 25
<ellZprn,mll” + - (IGl* + 1) Z S (IIxI) + z16s(z1) |, (18)
i=1
where and whereafter €1, &g, €5 and K;, €94, 3; (1 = 1, n) are positive design param-

eters to be specified.

For the 4th term on the right-hand side of (17) we have

n 5 IS €g | .
ZMixr-l—lzi = §2|$T+1|2 - 52 Try1 = — ZMZ
- 1 n i—1 n
+ = Z Miz:Mjz; + o — Z M?222. (19)
i=r j=r
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Besides, by Assumptions A3 and A4 we have

min{i—1,r
n - ™ - n — { E) }8al_1
2 E ._41'@1'21' = 2 E ‘—"LZ'L¢2 — 2 E ¥y A4 E 8 ’lﬁj
=1 i=1 i=1 j=1 xJ

< X [z + Lo () + 26|

=1

n min{i—1,r} 2
8&1'_ — i
DD [( ) :?z?+%6<||x||>+zfaj<zl>] 20)
i=1 j=1

8.73j
and
n i—1 q— n min{i—1,7} q— i—1 q— min{j—1,7r}
o=, o=; o=, Oa;_q
225, 9= X - ra X ]
i=2 j=1 9z, i=2 j=1 9z; j=1 9z; k=1 Oy,

1 n min{i—1,r} 9=, 2 ~
= 4 2
35 [( i) +;6<||x||>+z15j(z1>]

min{j—1,r} <35i>2 <8aj1)2 4
A
1 82’j amk '

+ %unxn) +zfcsk<zl>].

21

Denote X = (y”, £7)". Then, by the diffeomorphism (15) there exist smooth func-
tions 9;(-) (¢ = 1, -, n) such that z;; = ¥;(Xp;) (¢ = 1, - -+, n). From the smooth
properties of ©;(-), a;(+) and ¥;(-) (i = 1, - - -, n) it follows that H, ®; can be decom-

posed into the following forms:

H(z1) = H(z1) = H(0) + Hu(21)21,
Py (z1) = ¢1(21) = 01(0) + 11 (21)21,
i1
®;(Xji—1) = Rilzpi—1) = Bi(0) + D Bij(2p)z, i=2, -, n,
=1
where ﬁ(zl), ®11(21) and ®(21), i =2, -+, n, j =1, .-, i — 1 are smooth func-

tions, and H(0) = Hj,41,,(0) — GH},;(0) is available for feedback design.
Thus, we have
w{H (21) PH (21)} = e {[H(0) + Hur(21)21| P [H(0) + Hus(21)2] }
= [H(0)PH' (0)]
+ tr { [2?(0) + Hn(zl)zl} PFIl(Zl)} Z1 (22)

www.scichina.com



538 Science in China Ser. F Information Sciences 2004 Vol.47 No.4 527—544

and

(EZ ) T TIT T T
izr{ 82 [(I)lv"'aq)i] [le"'aéi]
=1 1

rr 0%=; o=, T
" TZE z; @1 @1
_ EZH Oz ) B} Ozi1) .
2~ 9 0=, ; oz
i Oz ) - 2 ;
rr 0=, 0=; T
2—27; 2 @1 (Pl
g 9z 9z 1) : .
- 5;“ (= : : %
LL 0z[i_q ®; ®;

+ = [901(0) + 611(21)251} [ 1(0) + <I)11 (21 21}

+ 00 B [B3(0) + X0 Bz | [Bi(0) + 07 Bz

7=, 0%, "
2721' 2 ¢1 (pl
1 Bz[i_l] 82[1;1]
< Syt pes : : 2
= 2 — 0 P, P,
82[2_1] 3 7

+ & [901(0) + 611(Z1)Z1} [801 (0) + 611(21)21}
+ 230, Eill B (0)12 + 2 X1y 62 X500 B HIBs (215 IPE5 22 (23)
Substituting (18)—(23) into (17) gives

LY < |1 ml® + o [HOPH (0)] + w{ [2H(0) + H1(21)21 | PHL (1)} 21

+eil| g, ll* +2 ZEi(zi+1 +a; + )z
n i—1 8-—~ =t
+ZZ lz1+1+a3+9)

=2 j=1 -7

PR e+ 0 Y [ + <2 zg} 2 3 M

i=1

acH_l Z M;z;

# 3 [+ Lo ) + 52

n i—1

+ ZZMzJle

i=r j=r

g
‘|‘§|xr+1|2
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n min{i—1,7} 2
Oa;_ - i
22 [( Pt) e+ 25 () + #75( )]
i=1 j=1

J

0=, 2 4, Y 2
l( o)+ 2 () + =)

min{i—1,r}

1 n
+§;{

=1 g
i—1 min{j—1,r}
13) 8a Y
C 4+ —4 28
DD [( =) (Cor) et s (i + 2 k<zl>]
j=1 J
2. = . T
1 aa 2‘—‘1 Zi 88‘—‘1 (I)l q)l
27 2l
[i—1] [i-1] . .
+§ ;tr , o=, T . : : Z
BZ[i_l] ¢l Qi
+El [2()01(0) + 611(21)21} 6‘;1 (Zl)Zl
n i—1
+~—'1901 +22._.1||<I) ”2 +QZiEiZH 1||q)w(z[J])| =5 12 (24)
i= j=1
Choose the weighted functions =1, Z;(2;-17) (2 <4 < n) as
Elzﬁl, Ei: — i 2<2<n

1+ [1B:(0)12 + 325 &5 1% (231
From (24) and the inequality:

by straightforward calculations we arrive at

LV < = | Fppaml* =26 (X)) - Zﬁzazzf + €0 [0 (IIx]) — 2100(21)]

i=1

=)

=;(0
+2Z‘—‘1 a; — X['L)+al( )\/':‘(Z[ 1])| ( ) ]Zi+c37

2li—11=%i—1(Xi-11)

(25)
where
€2
Cl =1- g1 — 5,
Vi IPII 2 "y s
¢ = €07 — Z (G| + 1) Z; 3 z
=1 =1 j=1
1 |Vmin{i71,r} ;i i—1 min{j—1,r} ’Yk-l
— 4 + -
2= L j=1 v ]z:; ; ’YJ ’

www.scichina.com



540 Science in China Ser. F Information Sciences 2004 Vol.47 No.4 527—544

_ L 1 . 1
ﬂi:/@i_22]'§j_—7 i=1--,n-1, Bp=0——;
j=it1 c2i s
TR G20 MU .2 B S {[28(0) + Fus(21)2a] PH ()}
2E 2 231 11
1_ 1 < 1 3 3
aB g S dan 3 00)+ e o)

i=1

n min{i—1,r}

1
=2 2 adi(=)
=1 =1 j=1
2 n min{i—1, r} i—1 min{j—1,7}
_4?2 5](Z1) +Z Z 5k(21) } ;
=1 ;=2 Jj=1 Jj=1 k=1 zy=xq
. { P B, g 205 aiiay
Q; = § — 75T T o= Fi-1 TG T o= 3. \Zi+1 T & j
2 25 25; i 0z; ro
i—1 2 i—1 =\ 2
Zi Z; Oa;_1\" 1 851‘) 3
oS 5 2T o= 2
0%°=; o=; T
2 zZ; ¢1 ¢1
_ 1 o 8z[i71] 52[1_1] :
8Z[i_1] ®; ®;
1 i—1j5—1 Ei 2 a o 2
mnnle) (G) Ay,
= j=1k=1 % Tk 2[51=0:(X[3])
— /81'27‘ —r—1 Zr - 8:1‘
T_{‘ 2 " aE T gm L gy, (et )
Zr 2 Tz_:l (8aT_1>2,_, 1 = <BET>2 3
2 2 =1 3.7:] 4Er =1 821 r
0%=, o=, T
—— 2, D, P,
1 " Oz, ) B 9zr)
4= =
" 2 r 0
(82[T_1]> @’I‘ (Dr
1 1 r-li-l =\ 2 da; 1 2
e LES () By
4=, e, Er i\ 9% oxy, e =0 (X))
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ZJ+1+aJ+Q)

2 2=,
; T 6 i 2 1 Ml —1
_Z_ ( & 1) Ez_ — M,Lz i — ZM]Z]'
2 st ox; 4=e9 22;e, =
2. = . T
=, 2 e
1 Ozf_y 0zi—1] : . 1 & (9%,
a5 " =\’ 3 Sl | TaE (az )
= =4 T j
a:l 2 min{j—1,r} a o 2
- Z(a ) Z (%) Zi3 yi=r+1, -, m
i =1 Zj k=1 Lk 231=9: (X[])
. 2(|@(0)]2 _
s = s [FH(O)PT (0)] 4 raon (0)97(0) + 0y & (””” +e%a3<o>) . (26)
1+ [|2(0)]]
Design a; (1 =1, - - -, m) as follows
s _ Zi(0)
i (Xpp) = @ (Xp) —@i(0)4/ = 27)
“i(z[ifl]) 2l =Yi—1(Xi—1))
Then, the actual control is
U= Qp. (28)

By substituting (27) and (28) into (25) we have

LV < —t1||Eps1mll* =26 (|x]) Z BiZ:iz2 +e0 [v00 (IIx|l) — 2z100(21)]+c5. (29)

3.3 Choice of design parameters

From the above design procedure we see that the key point is to choose the positive
design parameters €g, £1, €2 and K, €9;, B; (¢ = 1, - - -, n) such that

©1>0, G&>=0, B, >0,---,3,>0. (30)

The following lemma tells us a range and method specifying these design parameters.

Lemma 1. There are always positive design parameters g, €1, €2 and K;, €25, B;
(¢ =1, ---,n) such that (30) holds.

Proof. Choose arbitrarily design parameters k; > 0, g9; > 0 (2 = 1, --+, n),
g1 € (1, %),62 € (0, 1), and choose
1
ﬂ>22]"€+_(_ a"'an_l); ﬁn>8_

Jj=it+1 n

www.scichina.com



542 Science in China Ser. F Information Sciences 2004 Vol.47 No.4 527—544

and

n min{i—1,r}

"y S PI? e 1 .
02> 4y L (AP + )+ —> Y
YV =t

i=1 YooY i=1 YoYE1

1 min{i—1,r} i—1 min{j—1,r}
s D DI EED DEEE LD DD DR
290 = j=1 j=1 k=1

Then, it can easily be seen that (30) holds.
3.4 Main results
The following theorem summarizes the main results of this paper.

Theorem 2.  Consider the nonlinear stochastic system (2). Suppose Assumptions
A1—A4 hold, the design parameters €g, €1, €5 and K, €2;, B; (¢ = 1, - - -, n) are chosen
to satisfy (30). Then the minimal-order observer (7) based output-feedback control (28)
is such that the closed-loop system has a unique solution on [0, cc) almost surely, and is
bounded in probability. Furthermore, when ¢;(0) = 0(¢ = 1, - - -, n), the closed-loop
system is asymptotically stable in the large.

Proof. We have completed the control design in subsection 3.2. Suppose the Lya-
punov function for the whole system is V, = oV, + V. Then, by Assumption Al and
(29) we have

LV, < —eocVo — Cil|Zrramll® =26 (IXI) = D BiBizl + s < —a1Ve + 5, (31)

i=1
where ¢; = min (¢, e, AL (P), Bi, -+, Bn). Again, by Assumption Al we get £, Wy,
+V <V, < ggWpe + V, where oWy + V and ¢gWy, + V' are positive, radially
unbounded. Then, from Theorem 1 it follows that the closed-loop system has a unique
solution on [0, 0o) almost surely, and is bounded in probability.

If 9;(0) =0(i = 1, - -+, n), then we have H(0) = 0, ®;(0) = 0 and &;(0) = 0.
This leads to ¢z = 0 and LV, < —c; V., which together with Theorem 1 implies that the
closed-loop system is asymptotically stable in the large.

Remark 3. If the observer (13) is adopted for control design, then an extra term
2Z[, 11, ] P f(y) will arise on the right-hand side of (17). To deal with this term, we first
separate &[,+1, and f(y) by using the Young’s inequality:

Pl? _
1P 7pip, e >0,

€3
where &3||Z(41,)||* can be dominated by the negative terms on the right-hand side of

(17). While for term @ | f(»)||?, in the case where r = 1, thanks to the existence of the
factor 22, it can be cancelled out by the virtual control ; (see ref. [10]), but when 7 > 1,

220, 11w PT(Y) < el mll® +

@ | f(%)||? cannot be controlled effectively by the virtual control c;; (i = 1,---, 7 —1),

since there is no further assumption on ?(y), and by integrator backstepping approach,
measurable states x; 1, - - -, Z, are unavailable for virtual controls o; (i =1, - -+, 7 — 1).
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And, @ || f(v)]|? cannot be cancelled out by the virtual controls a;; (i =7, - -, n — 1)
and the actual control u, since z; (¢ = 7, - - -, n) is not a factor of @H?(y)”2 Thus, it

is hard to control effectively the term 227, P£(y). Therefore, the observer (13) is not
adequate to the multi-output (y = x[,],7 > 1) systems.

Remark 4. From (27) and (28) it follows that the virtual controls a; (2 = 1, - - -,
n—1) and the actual control u = a,, preserve the equilibrium at the origin of the nonlinear
system. c3 depicts the static property of the closed-loop system. From (26), we can see
that the smaller the design parameters x; and €5; (z =1, n) are, the smaller c; is.
This together with (31) implies that in order to get a small static upper bound of the closed-
loop system states, we only need to take small x; and ey; (¢ = 1, - - -, n). However, from
the expressions of virtual controls and actual control, we see that the smaller the design
parameters k; and £q; (¢ = 1, ---, n) are, the more the control energy needs, in other
words, in order to get a small static upper bound of the closed-loop system state, one
should pay more in terms of control energy.

4 Conclusion

In this paper, the design problem of output-feedback stabilization control for a class of
SIMO stochastic nonlinear systems with unobservable states, unmodelled dynamics and
stochastic disturbances is investigated, and the design methods of minimal-order observer
and output-feedback stabilization control are presented. Based on the observer designed,
the estimates of all the system states are given, and the convergence of the estimation
error is analyzed. By using integrator backstepping approach, an output-feedback stabi-
lization controller is constructively designed, which ensures that the closed-loop system is
bounded in probability and, when the nonlinearities and stochastic disturbance equal zero,
asymptotically stable in the large. The observer introduced in this paper not only preserves
the advantages of the full-order observer, but also avoids the extra term arising in the dy-
namical equation of the estimation error, and so, is adequate to the control design of SIMO
systems (e.g. y = (21, -+ -, )7, 7 > 1). Problem needing further study includes: how
to constructively design minimal-order and the observer-based output-feedback stabiliza-
tion control for systems, such as, with output of the form y = Cx, where C'isanr X n
matrix with only one element 1 in each row and column and the others are 0.
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